Akaganeite has been found in Yellowknife Bay mudstones of the Gale crater by the Chemistry and Mineralogy X-ray diffraction instrument (CheMin) aboard the Curiosity rover. This phase has also been discovered in limited locations on Mars by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter. Akaganeite has also been proposed as a precursor candidate of hematite on Mars. To better constrain the stability and occurrence of akaganeite on Martian surfaces, structural and spectral modifications of akaganeite introduced by heating and desiccation were systematically investigated. We found that the phase transformation from akaganeite to hematite starts at 245 °C, which is accompanied by the removal of chloride in tunnels. We propose that geological activities (e.g., impact and volcanism on Mars) could heat the surrounding area and cause the transformation of akaganeite into hematite in Martian rocks and surface materials. Relative humidity (RH) variations result in water combination and overtone absorptions band strength changes. The CRISM spectrum of akaganeite detected in the Robert Sharp crater shows relatively weak 1.39 μm band compared to that of desiccated akaganeite under simulated Martian environments, indicating that akaganeite found on Mars could be highly desiccated. The water adsorption of akaganeite occurred when exposed to ambient laboratory conditions (RH ~65%). This suggests the water adsorption and desorption of akaganeite on Mars correspond to RH changes in a diurnal cycle.
Figure 1 SEM image of unheated and thermal-treated akageneite
Figure 2 Comparison of laboratory hematite spectra to Pancam spectra of hematite spherules on Mars
Figure 3 CRISM spectrum of akaganeite at Robert Sharp crater plotted together with continuum removed NIR reflectance
spectra for akaganeite
https://doi.org/10.1016/j.icarus.2019.113435